MATH 504 HOMEWORK 6

Due Monday, November 19.

Problem 1. Show there is a projection $\pi : Add(\omega, \lambda) \to Add(\omega, 1)$.

Problem 2. Let M be a transitive model of ZFC and $\mathbb{P} \in M$ be a poset. Suppose that $p \in \mathbb{P}$ is such that $p \Vdash "\dot{f} : \lambda \to \tau$ is a function".

- (1) Show that for every $\alpha < \lambda$, $\{q \mid \exists \gamma \in \tau(q \Vdash \dot{f}(\alpha) = \gamma)\}$ is dense below p.
- (2) Let $B = \{\gamma < \tau \mid (\exists q \leq p)(\exists \alpha < \lambda)(q \Vdash \dot{f}(\alpha) = \gamma)\}$. Show that if $\sup(B) < \tau$, then $p \Vdash "\dot{f}$ is bounded".

We say that \mathbb{P} preserves cofinalities if for every ordinal α , if in V, $cf(\alpha) = \tau$, then $1_{\mathbb{P}} \Vdash cf(\alpha) = \tau$.

Problem 3. Prove (in detail) that if \mathbb{P} preserves cofinalities, then \mathbb{P} preserves cardinals.

Problem 4. Suppose \mathbb{P} and \mathbb{Q} are two posets and $i : \mathbb{P} \to \mathbb{Q}$ is such that:

- (1) $i(1_{\mathbb{P}}) = 1_{\mathbb{Q}};$
- (2) If $p' \leq_{\mathbb{P}} p$, then $i(p') \leq_{\mathbb{Q}} i(p)$;
- (3) For all $p_1, p_2 \in \mathbb{P}$, $p_1 \perp p_2$ iff $i(p_1) \perp i(p_2)$;
- (4) If A is a maximal antichain of P, then iⁿ A := {i(p) | p ∈ A} is a maximal antichain in Q.

Suppose also that H is \mathbb{Q} -generic. Show that $G := \{p \in \mathbb{P} \mid i(p) \in H\}$ is \mathbb{P} -generic and that $V[G] \subset V[H]$, where V is the ground model.

Remark: an embedding as above is called a *complete embedding*.

Problem 5. Suppose that for all $n, 2^{\aleph_n} = \aleph_{\omega+1}$. Show that $2^{\aleph_\omega} = \aleph_{\omega+1}$. Hint: For each $A \subset \aleph_\omega$, define $A_n := A \cap \aleph_n$. Consider the map $A \mapsto \langle A_n \mid n < \omega \rangle$.

Problem 6. Suppose that \mathbb{P} is a poset, $A \subset \mathbb{P}$ is a maximal antichain, $\phi(x)$ is a formula, and $\langle \tau_p \mid p \in A \rangle$ are \mathbb{P} names, such that for all $p \in A$, $p \Vdash \phi(\tau_p)$. Show that there is a \mathbb{P} name τ , such that $1_{\mathbb{P}} \Vdash \phi(\tau)$.